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ABS TRACT 

This report presents a comparison of four different estimation techniques 

applied to the problem of continuously estimating the parameters of a 

sinusoidal Global Positioning System (GPS) signal, observed in the presence of 

additive noise, and under extremely high-dynamic conditions. Frequency 

estimates are emphasized, although phase and/or frequency rate are also 

estimated by some of the algorithms. These parameters are related to the 

velocity, position, and acceleration of the maneuvering transmitter. Estimated 

performance at low carrier-to-noise ratios and high dynamics is investigated 

for the purpose of determining the useful operating range of an approximate 

maximum likelihood (ML) estimator, an extended Kalman filter (EKF), a 

cross-product automatic frequency control (CPAFC) loop, and a digital 

phase-locked loop (PLL). Numerical simulations are used to evaluate 

performance while tracking a common trajectory exhibiting high dynamics. 
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I. INTRODUCT I ON 

The problem of estimating the parameters of a single-frequency tone in 

the presence of additive noise occurs often in engineering. The parameters of 

interest are typically the tone's amplitude, phase, frequency and its time 

derivatives. Here our primary interest is in real-time estimation of dynamic 

doppler frequency, assuming constant amplitude. Estimation of the received 

phase is considered to be of secondary importance. 

Accurate frequency estimation and tracking is of fundamental concern in 

the design of Global Positioning System (GPS) receivers observing signals that 

exhibit high dynamics. GPS receivers process radio signals received from a 

constellation of 18 satellites in order to determine the receiver's position 

and velocity. Each signal is the sum of two L-band carriers, biphase 

modulated by pseudorandom codes and information streams. We assume that the 

modulation is known and has been removed from the signal. This assumption is 

valid when the ground station establishes a direct link with the GPS 

satellites, in parallel with the link to the transponder aboard the 

maneuvering target. Decoded data from the direct link can then be used to 

wipe data from the transponder link, effectively transforming these signals 

into unmodulated RF tones. The problem then reduces to estimating the 

parameters of two sinusoidal signals in additive noise. Here we concentrate 

on one of these tones, namely the L1 carrier at a frequency of 1.575 GHz. 

In a previous paper [ l ] ,  an estimator structure based on the maximum 

likelihood estimator of code delay and doppler frequency over a single symbol 

interval was analyzed. At signal-to-noise ratios above 30 dB-Hz, this 
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estimator performed well in the presence of considerable acceleration and 

jerk, even though no attempt was made to compensate for the effects of these 

trajectory components. The estimation error was close to the Cramer-Rao bound 

above 30 dB-Hz, below which rapid performance deterioration occurred, leading 

to loss-of-lock at about 28 dB-Hz. 

In the current application, the data have been removed from the carrier, 

hence we assume the estimator observes a sinusoid in the presence of additive 

noise. The frequency of the received sinusoid varies with time according to 

the trajectory of the vehicle being tracked. In principle, the estimator is 

free to observe the signal over several symbol intervals, thus decreasing both 

the estimation errors and the loss-of-lock threshold. However, rapid changes 

in the trajectory limit the maximum time interval during which the estimated 

parameters remain constant. Thus, a classical trade-off between noise 

suppression and doppler tracking results. 

Four different estimation techniques will be compared in the following 

sections. First we consider an extension of the "approximate maximum 

likelihood" technique described in [ l ] .  This technique involves a significant 

extension of previous results, hence it will be developed in some detail. 

Second, an extended Kalman filter with parameters matched to the dynamics of 

the signal is described and analyzed, again in some detail due t o  the novelty 

of the high-dynamic application. The third technique employs a cross-product 

frequency control loop to obtain frequency estimates. Finally, the fourth 

approach examines a standard digital phase-locked loop. In all cases, 

estimator performance is compared on the basis of root mean squared estimation 

error and probability of loss-of-lock, while tracking a common simulated 

high-dynamic trajectory. 
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This article is subdivided into six sections. Section I1 describes the 

comon trajectory used in the simulations. Section I11 is devoted to the 

development of the appropriate signal and noise models. The estimation 

algorithms are described and analyzed in Section IV, and the simulation 

results are compared in Section V. Sunnnary and conclusions are presented in 

Section VI. Finally, the Cramer-Rao bound on the estimation error for the 

case of unknown acceleration is derived in the Appendix. 

3 



11. COMMON TRAJECTORY 

The performance of the various estimators is evaluated on the basis of 

their ability to track a common trajectory. The trajectory chosen for 

simulation consists of positive- and negative-going jerk pulses of 0.5-sec 

duration and magnitude of 100 g/sec, separated by two seconds of constant 

acceleration, as shown in Fig. l(a). The corresponding acceleration and 

velocity trajectories are shown in Figs. l(b) and l(c). The initial 

conditions for acceleration were chosen for symmetric 25-g excursions. The 

velocity trajectory is converted to an equivalent doppler frequency trajectory 

as 

which shows the one-to-one correspondence between the velocity v (t) of the 

physical trajectory and the instantaneous frequency of the received signal. 

Here v (t) is the doppler velocity, f denotes the carrier frequency, and 

c is the speed of light. Examination of Fig. l(c) reveals that the doppler 

velocity, hence doppler frequency, of this trajectory can be well approximated 

by a piecewise linear model over time intervals on the order of 0.1 sec, even 

when a 100 g/sec jerk pulse is applied. This observation forms the basis for 

reducing the complexity of the simulated maximum likelihood estimator, as 

described in Section IV. 

d 

d C 
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The c o m n  input to the simulation programs consists of samples of 

in-phase and quadrature sinusoids with phases proportional to the integral of 

the simulated frequency, plus independent additive noise samples. The 

properties of these input samples are easily derived from the continuous model 

of the received waveform. Therefore we begin by developing a suitable model 

for the trajectory-modulated received signal. 
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111. TEE RECEIVED SIGNAL 

In the absence of noise, the received signal at the antenna may be 

represented as 

where :(t) is the signal complex 

and where the phase process e( 
frequency process f (t) as d 

envelope, A is its 

is defined in 

amplitude, w = 2nfc, 

erms of the doppler 
C 

This trajectory-modulated signal is observed in the presence of a zero mean, 

stationary, narrow-band Gaussian noise process n(t), with representation 

where E(t) is the complex envelope of the narrowband process. If the bandwidth 

of the noise process greatly exceeds that of the signal, then the covariance 

function of the complex envelope may be approximated as 

where No is the two-sided spectral level of E(t). Henceforth, we assume 

that No is known. One can show that the two-sided spectral level of the 

corresponding real bandpass process is N0/2. In the current application, 
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a complex zero mean Gaussian process, is a complex zero-mean random i 

variable with covariance 

the carrier is first removed by mixing the received signal with sinusoids at 

the carrier frequency, yielding in-phase and quadrature components. 

Typically, both the in-phase and quadrature signals are first sampled at a 

high rate (mega-samples per second), and subsequently input to digital 

accumulators. The output of the accumulators, viewed as complex samples, can 

be modeled as 

I 

J iTs 

a u  where E(t) = s(t) + z(t) is the complex envelope of the received signal. In 

the subsequent simulations, the effective integration time, Ts, will be exactly 

2 msec in duration. The effects of spectral roll-off due to the effective 

integration will be ignored in this paper. If T is short compared to the 
S 

variation in E(t), then by the mean-value theorem there exists a t in the 

i-th T interval such that = g(ti). For suitably small Ts, we may regard 

t. as the center of the i-th integration interval. 

i 

S i 

1 

Derivation of noise sample statistics is straightforward. Since Z(t) is 

(i+l )Ts (k+l ITs 
N 

dt2 E(tl) ?(t2) = - To 'ik ( 7 )  
dtl k S 

E(;.?) i k  = (Ts)-2/ 
iT 

S S 



Here the overbar denotes the expectation operator, and bik is the 

Kroenecker delta. Since all of the samples are pairwise uncorrelated, the 

joint density of any N distinct samples can be expressed as the product of the 

individual densities. This property is fundamental to much of our subsequent 

analysis. 
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IV. DESCRIPTION AND ANALYSIS 

In this section, the various frequency estimation algorithms are 

described and analyzed. Some of the algorithms also provide useful phase 

estimates; however, we shall not address the phase tracking problem 

explicitly. Analytical expressions for estimator performance are obtained 

where possible. In all cases, estimator performance is evaluated by means of 

numerical simulations. 

MAXIMUM LIKELIHOOD (ML) ESTIMATOR 

The maximum likelihood (ML) estimates of the signal parameters are those 

values that simultaneously maximize the conditional joint probability density 

of the observation vector, conditioned on the signal parameters. If the 

statistical distribution of the signal parameters within some uncertainty 

interval is not known, then maximum likelihood estimation yields the smallest 

estimation error variance. For each estimate, the observation vector consists 

of consecutive samples obtained over a time interval that is short compared to 

the characteristic timescale of the trajectory variations. We begin by 

developing a representation for the received phase process. 

Near a point t in the domain of the trajectory function the frequency 0 

process can be represented in terms of a Taylor series expansion as 

akf(t) f A- 
- atk t=t0 

10 



This representation is valid where all derivatives exist. For the trajectory 

function illustrated in Fig. 1, we can let fk = 0 for k > 2, everywhere 

except at the points of discontinuity. As an example, near the point to = 0, 

representing the 

eo + 

e(t) = 

The coefficient 

derivative with 

center of an observation interval, 

(9) 

fo represents the doppler frequency in Hz, fl its first 

units of Hz/sec, and f2 its second derivative with respect 
2 to time (Hz/sec ). These coefficients correspond to the velocity, accelera- 

tion, and jerk of the physical trajectory. Henceforth we shall use the vector 

notation 5 = (fo, fl, f ) to denote these signal parameters. 2 

a. Maximum Likelihood Estimator Structure. 

The maximum likelihood estimator uses the conditional probability density 

of the observable vector, conditioned on the parameters of interest. Since 

the signal in Eq. (2b)  is completely specified by the parameters A, eo, and E, 
it is equivalent to condition on the signal samples as 

The maximum likelihood estimates of the signal parameters are those 

values that simultaneously maximize this conditional joint density. 

11 



Equivalently, we can maximize any monotonically increasing functional of the 

conditional joint density, such as the logarithm. Taking the natural log of 

Eq. (10) and discarding terms which contain no information about the signal 

yields the "log-likelihood" function 

Here E is an observation vector of length N, and are the samples 

defined in Eq. ( 6 ) .  With no loss in generality, the observation interval is 

assumed to be centered around the origin. Using Eq. (9) in Eq. (2b), we write 

the signal samples as 

i' i 

gi(f.) = 2nf t. + hi(f f 1 0 1  1' 2 

Substituting Eq. (12) into Eq. (11) yields 

in terms of the modified samples zi 4 Ti exp(-jhi). This is the function to 

be maximized. Following the development in [l], we recall that for any 
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complex x, Re[exp(-j0 1x1 is maximized with respect to eo when eo = arg(x), 0 
taking on the value 1x1. Thus, 

ii = N 

Substituting into Eq. (13) yields 

- j 2nf Oti 
C P . e  1 
i 

Since the amplitude is 

differentiating Eq. (15) 

.. 
assumed to be unknown, its estimate A is found by 

with respect to A ,  equating to zero and solving: 

Using this value in Eq. (15) yields 

Recalling that z contains the desired parameters fl and f2, it follows 

that the maximum likelihood estimates (fo, fl, fz) are those values that 

simultaneously maximize Eq. (17). Letting ti = (i + (1/2))Ts and dividing 

by the constant coefficient, we can equivalently maximize 

i 
,. ,. A 

I I i=-N/ 2 
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I The function L(fo, fl, f ) is proportional to the squared magnitude of the 

Fourier transform of the modified sequence {Zi}. This interpretation is 

useful for implementation, since efficient FFT algorithms can be employed to 

carry out the maximization. In general, estimator complexity depends on the 

number of significant terms in the Taylor series expansion of the received 

phase, which in turn depends on the trajectory. Thus, there is a direct link 

between the trajectory and the effective dimensions of the maximum likelihood 

estimator . 

2 

b. Estimator Performance. 

In the current application, estimation of the received frequency is 

emphasized. The other parameters are regarded as "nuisance parameters" which 

may nevertheless have to be estimated to achieve best performance. The 

estimates are typically subject to threshold effects characteristic of 

nonlinear estimators, which means that below some critical carrier-to-noise 

ratio (CNR a A /No)  catastrophic deterioration in estimator performance 

begins to occur. Above threshold, estimator performance can be assessed by 

means of Cramer-Rao bounds. Below threshold, however, the breakdown mechanism 

must be modeled accurately to arrive at useful error estimates. We begin by 

developing some concepts that are necessary for understanding estimator 

performance. 

2 

I 

The maximum likelihood estimates of frequency and its time derivatives 

are those values fo, fl, and f2 that simultaneously maximize the real 
,. ,. ,. 
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function L ( f ) .  Let flQ, Q = 0,1,2 denote the true parameter values, and let 

G(df) denote the function 

i=-N/ 2 

- fi, and gi(df) is defined in Eq. (12b). We observe that fQ where ATQ = 

I G ( M ) l '  is proportional to L ( f )  centered over f' when the variance of the 

noise samples approaches zero. The projections of IG(E) I onto Cartesian 

coordinates defined by the signal parameters are shown in Figs. 2(a-c) where we 

let G(Afo) denote G(Afo,O,O), and so on. Note that the peak of the function 

lG(AfQ)12 always occurs at the true parameter values, and that its shape 

depends only on the deviation from the true value: the coordinates of the peak 

track the temporal variations in the signal parameters, while the shape of the 

function remains unchanged. Therefore at high CNR, we expect the estimates t o  

be near the peak along each coordinate, and the estimation errors to be 

related to the main lobe dimensions. 

2 The effects of acceleration and jerk errors on IG(Afo)l are 

shown in Figs. 2(d-f ). Evidently, acceleration errors result in decreased 

peak amplitude (Fig. 2(d)), whereas jerk errors give rise to a shift in the 

peak as well (Fig. 2(e)). Significantly reduced and shifted peak values can 

result when both acceleration and jerk errors are present simultaneously, as 

shown in Fig. 2(f). 
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The addition of noise impairs the estimator's ability to resolve the 

coordinates of the peak. The effects of additive noise can be quantified by 

means of the noise coherence function. For the case under consideration, we 

denote the effective three-dimensional transformed noise process by 

n3(fo, fl, f2). Letting the signal component approach zero in Eq. (181, and 

using Eqs. ( 7 )  and (191, we obtain 

i Q  

where 

i 

Thus, Eq. (20) exhibits the same dependence on - Af as the function G(&) 

defined in Eq. (19). 

An analytic expression for the projection of G(df) along the frequency 

coordinate follows by letting t = (i + ( 1 / 2 ) )  Ts in Eq. (19): i 

1 sin (wAfONTs) 
G(AfO) = sin (wAfOTs) 

This is recognized as the Fourier transform of an NTs second pulse-train. 

However, for projections along the other coordinates, no closed form 
,L, 

expressions could be found. 

The Cramer-Rao bound for estimating the frequency of a pure tone without 

phase information is well known. Using the results of [ 2 ] ,  and converting to 

our notation, we have 
19 



; N > 2, known frequency rate 1 

var(diO) 2 (+)@) T3N(N2 - 1) 
- 

S 

This bound applies to unbiased estimators. The variance of estimation error 

is inversely proportional to CNR, and for large N, inversely proportional to 

the cube of the total observation time. If the frequency drifts with some 

acceleration, then Eq. (22) may still apply at high CNR, provided the 

acceleration does not change significantly from one observation interval to 

the next, and assuming that it has been estimated accurately in the past. If, 

however, the acceleration changes significantly over the timescale of an 

observation interval, so that it cannot be assumed known, then Eq. (22) does 

not apply. In that case, the Cramer-Rao bound for estimating frequency in the 

presence of an unknown frequency rate should be used. This bound, derived in 

the Appendix, has the form 

, 

var(AiO) 2 16(--$)@) - , N 2 ,  unknown frequency rate 
T3N3 
S 

I for large N. 

(23) 

At low CNRs, estimator performance is critically linked to the total num- 

ber of "coherence cells" in the observation volume. Referring to Figs. 2(a-c), 

the "coherence-length" 6fQ along the Qth coordinate is defined as the distance 

from the peak to the first minimum of the function IG(&)I2 along that 

coordinate. We immediately conclude from Eq. (21) that 6f0 = 1/T N. The 

values of 6fl and 6f2 can be computed accurately for any value of N. 

Thus we may think of associating a distinct random variable with each coherence 

cell, statistically independent of all others. 

S 
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Although the statistical distribution of the signal parameters is not 

known, we assume that with high probability their true value is contained in 

some "uncertainty volume" whose center and dimensions can be specified. This 

uncertainty volume may be thought of as a region in R with dimensions 

(Fo, F i r  F2) ,  such that with high probability 

3 

- - - < f i < -  
2 -  2 

for each Q. We shall show that the est,.nator threshold tends to decrease w 

decreasing volume, provided the true parameters remain within this volume. 

th 

The total number of independent random variables contained in an 

observation volume V = FoF1F2 is 

Thus we may think of partitioning the observation volume into M disjoint 

coherence cells, one of which contains signal plus noise, while the remaining 

(M-1) contain only noise. The noise samples associated with different 

coherence cells are independent complex Gaussian random variables, each with 

zero mean and variance o2 = N(No/Ts). The mean value due to the 

signal is AN. The probability density of the magnitude of signal plus noise 

is the Rician density function 
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while the noise sample magnitudes are distributed according to the Rayleigh 

density as 

In Eq. (251, IO(.) denotes the modified Bessel function of zero order. 

Since the m x i m u m  likelihood estimator selects the coordinates of the largest 

peak as its estimate, large errors can occur if the magnitude of a noise 

sample in one or more coherence cells exceeds the magnitude of signal plus 

noise. This event is called an "outlier." Outliers occur with probability 

q = 1 - p, where 

2 2  2 Note that p and q depend only on the ratio (NA) /u = A Ts/NO and M. The 

behavior of q as a function of CNR is shown in Fig. 3 for NTs = 100 msec and 

various M. It is apparent that for 100 msec observation times the probability 

of selecting the wrong observation volume is small for CNRs greater than 

23 dB-Hz, while at lower CNRs outliers are virtually certain. At any CNR, q 

is an increasing function of M, hence it is advantageous to keep M small in 

order to avoid frequent outliers, leading to large estimation errors. 

Given that an outlier occurred, the estimation error variance can be found 

by assuming that each point within the observation region has equal a priori 
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probability of being chosen, hence the frequency estimate may take on any 

value between -F0/2 and F0/2. Therefore, 

A 

x 2 d x = -  rO 
l r )  

var(AfoIcell error) = F6l (28) 

The high CNR result of Eq. (22)  may be interpreted as the variance of the 

estimation error given that the correct coherence-cell was chosen, that is, 

10 15 20 25 30 

CNR, dB-Hz 

Figure 3.  Outlier Probability q as a Function of CNR 
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I 

var(Af /no cell error). At any CNR, the variance of frequency estimation 

error is given by 

0 

,. ,. ,. 
var(Afo) = q var(folcell error) + p var(f Ino cell error) 0 

which can be bounded in terms of the underlying parameters as 

The standard deviation of the estimation error as a function of CNR is 

shown in Fig. 4 ,  for N = 50, Ts = 2 msec and M = 160. For this example, the 

boundary between the high and low CNR regions is roughly 24 dB-Hz. This 

boundary need not correspond exactly to the loss-of-lock threshold, which we 

define as the CNR at which the estimator loses lock ten percent of the time. 

10-1 I I I I I I I 

15 17 19 21 23 25 27 29 
C N R ,  dB-Hz 

Figure 4 .  RMS Frequency Error and its Components (ML) 
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c. Simulation Results. 

Estimator performance was verified by means of numerical simulations. 

The received samples were obtained from the common trajectory by sampling at 

2-msec intervals, generating complex signal samples with the proper phase 

variation, and adding independent complex noise samples. In this 

implementation, N consecutive samples were processed by the estimator at one 

time, and the resulting parameter estimates referred to the center of the 

observation interval. These current estimates were used to predict the center 

of the observation volume for the following interval. 

A discrete approximation to the maximum likelihood estimator may be 

obtained by evaluating L ( f )  at uniformly spaced points along each coordinate 

of the uncertainty volume, with spacing fine enough to resolve the main lobe. 

Using this approach, efficient fast-Fourier transform (FFT) techniques may be 

employed to reduce the computational burden. In the current application, the 

simulated trajectory is dominated by LOO-g/sec pulses of 0.5-sec duration. 

Since the sampling rate is fixed, the maximum change in acceleration increases 

with the total number of consecutive samples N. However, during constant 

acceleration, the rms estimation error decreases with increasing N. Thus we 

expect that for a given set of dynamic conditions an optimum value of N exists 

that provides high CNFt without incurring excessive change in acceleration, 

which would require extending the acceleration uncertainty interval. 

The dimensions of the uncertainty volume and the number of discrete grid 

points along each coordinate are fundamental simulation parameters. Referring 

to Fig. 2(c) we note that for N = 50 and Ts = 2 msec, the along the main lobe 
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Af2 coordinate extends to about 240000 Hz/sec2. We also observe from Fig. 2(e) 

that an error in jerk of 2100 g/sec 2 25000 Hz/sec causes only a slight 

decrease in the peak of lG(Afo)12 and a relatively small shift in frequency. 

Since we are primarily interested in estimator performance near threshold 

where frequency errors tend to be large, it seems reasonable to ignore the 

variation in jerk, and effectively assume it to be zero throughout the 

trajectory. Of course, this approximation impacts estimator performance at 

CNRs well above threshold, where the dominant source of frequency error now 

becomes the shift in the peak due to the non-zero jerk. 

2 

Since we are projecting the estimates ahead in time to the center of the 

following observation interval, the maximum change in acceleration that can 

occur in NTs = 100 msec due to +lOO-g/sec jerk is 210 g 2500 Hz/sec. Thus 

we let (F1/2) 2 10 g, and partition F1 into 2.5-g increments covering a 

range of 215 g, including a margin. The resulting 13-point grid samples 

G(Afl) at 125-Hz/sec intervals, easily resolving the main lobe. 

Finally, we recall that F = l/Ts = 500 Hz. Since the first zero 

along the frequency coordinate occurs at 10 Hz, the main lobe is well resolved 

by oversampling at roughly 2 Hz, implying the use of a 256-point FFT (the 

power of two nearest 250). Thus, we append 206 zeros to the 50 samples, and 

perform 256-point FFTs for each of 13 acceleration increments. From Eq. (241, 

using the value 6fl = 700 Hz, the total number of independent random 

variables in this observation volume is M = [(500/10) + 11[(1500/700) + 11 = 

160, which is the value used in the computation of the outlier probabilities. 

0 

- 
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Representative sample sequences of frequency and frequency rate 

estimation errors are shown in Figs. 5(a) and 5(b), at a CNR of 23 dB-Hz. 

Note the highly quantized nature of the frequency rate estimation error, due 

to the 2.5-g quantization of the acceleration estimate. At such low 

carrier-to-noise ratios the estimator sometimes loses lock before completing 

the entire trajectory. 

3 

CNR = 23 dB-HZ 2 

2 1  
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z 
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Figure 5(a). Instantaneous Frequency Error as a 
Function of Time (ML) 
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Figure 5(b). Instantaneous Frequency Rate Error as a 
Function of Time (ML) 
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Figure 6(b). Estimated RMS Frequency Rate Errors as 
Functions of CNR (ML) 

Estimates of the rms frequency estimation errors are shown in Fig. 6(a) 

for N = 30, 50, and 80 using 2-g, 2.5-g, and 3-g acceleration quantization, 

respectively. The saturation in the estimation error at CNRs above 26 dB-Hz 

for N = 50 and 80 is attributed to the shift in the peak of the likelihood 

function introduced by the non-zero jerk pulses. These errors tend t o  

increase with N because the magnitude of the shift is proportional to the 

observation interval. Simulation results for N = 50 were also obtained using 
I 
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the true value of the jerk in order to bound the improvement in the frequency 

estimates that could be obtained if the jerk were estimated as well. The 

dotted curve in Fig. 6(a) presents the results. Apparently, no improvement 

is possible at or below threshold. Above threshold, however, frequency 

estimation errors could be reduced by the simultaneous estimation of jerk, 

acceleration, and velocity components. From Fig. 6(b) we note that the 

frequency rate estimates are not affected by mismodeling the jerk, at least in 

the range of the CNRs considered. 

If the predicted frequency for the upcoming observation volume is in 

error by more than 2250 Hz, then the signal parameters most likely fall 

outside the succeeding observation volume, in which case loss-of-lock occurs. 

The loss-of-lock probability p is approximated by counting the number of times 

the estimator loses lock in 100 independent simulations. Estimates of the 

loss-of-lock probability are shown in Fig. 7 for N = 30, 50, and 80 samples 

per estimate. Note that loss-of-lock probabilities do not improve 

significantly if the true jerk is used, as shown by the dotted (curve. 

Finally we observe that estimator performance could be improved somewhat 

by searching over a subset of the uncertainty volume. This approach is 

motivated by the observation that the maximum change in frequency is limited 

to 2125 Hz, due to 25-g acceleration applied for 0.1 sec. Hence the total 

number of degrees of freedom becomes M = 26 x 3 = 78, which may result in a 

0.3-dB reduction in the threshold. However, such fine-tuning is possible only 

because the trajectory parameters are well known. If that were not the case, 

this minor improvement may well be cancelled by the increased design margin 

required to compensate for the greater initial uncertainties. 

.., 

29 



1 .o 

20 22 24 26 28 30 
CNR, dB-Hz 

I I I 1 I 

Figure 7. Estimated Loss-of-Lock Probabil- 
ities as Functions of CNR (ML) 

EXTENDED KALMAN FILTER (EKF) 

Here we consider the application of an extended Kalman filter (EKF) to 

, the problem of estimating the parameters of the received signal, driven by the 

common trajectory. A fundamental difference between this and the maximum 

I likelihood approach is that the EKF provides instantaneous estimates after 

each new sample based on the latest sample value and previous estimates, 

whereas the maximum likelihood estimator provides estimates of average 

parameter values after processing a large number of samples. We begin by 

deriving the structure of the EKF estimator. 
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a. Extended Kalman Filter Estimator Structure. 

In this derivation we adopt vector notation, both for convenience and to 

conform to established practice. The received samples defined in Eq. ( 6 )  are 

now expressed as 

where nl(k) = [nI(k), n (k)] is a zero-mean Gaussian vector, with the Q - 
subscripts I and Q denoting in-phase and quadrature components, respectively. 

These correspond to the real and imaginary components of the complex noise 

sample defined in Eq. (6 ) .  From here on, the amplitude A is set to unity as 

it is assumed known and need not be estimated by the EKF. As before, we have 

with I denoting the 2 x 2 identity matrix, and o2 = N0/2Ts. n The 

extended Kalman filter operates on the phase 8 ( k )  which is a sampled version 

of the integral of the frequency trajectory. The phase can be modeled as an 

n-th order polynomial whose derivatives constitute the components of the 

state-vector x_(k) as follows: 

- x(k + 1) = g x ( k )  - -  + l(k) 
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In the above, 

vector. 

denotes the state transition matrix and v(k) is the disturbance - 
For a fourth-order EKF, gT(k) becomes 

where the various derivatives of 8(k) are denoted by wo(k), wl(k), 

and w2(k), respectively. Here each w, is 2n times as great as the 

corresponding f ,  defined previously. The disturbance term models the 

random changes in the parameters due to dynamics. Since consecutive components 

of the state vector are integrals of the succeeding ones, repeated integration 

over the observation time yields 

ol(k + 1) = wl(k) + Tsw2(k) + v3(k) 

T2 T3 
8(k + 1) = e(k) + T w (k) + $ wl(k) + 2 w2(k) + vl(k) s o  

where 

4-i i" 'I: (4 - i)! Y(T) d-r ; i = 1, ..., 4 vi(k) = 

(k-1 ITs 

(35 1 
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and Y(t) denotes the fourth derivative of the continuous version of the 

phase. Assuming that Y(t) is a zero-mean white process with spectral level 

Ny, we get 

2 2  N 
E[vt(k)l = 3 Ts = oyTs 

Y with o2 denoting the variance of the sampled version of Y(t), and N 

the level of the power spectral density of Y(t). The system matrix 9 and 
the covariance matrix 9 of the disturbance vector u(k) can be derived from 

Eqs. (34) and (35), as in [31: 

Y 

- 

Q = N T  - Y S  

1 T S T:/2 

0 1 

0 0 

Tz/252 

Ti172 

T:/30 

T3/24 S 

S 
T 

1 

T4/20 S Ti18 T;l6 

T:/8 T:/3 Ts/2 

T:/6 Ts/2 1 
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The following equations can then be derived for the estimation of the state 

vector g ( k ) ,  as in [41 :  

2 where & = un 6,  a is some weighting coefficient greater than one, 

and T (k) is the linearization of the function h(x(k)), i.e., 

(39) - H T (k) = ax a & ( I ) /  
- 

x - -  = x(klk-1) 

where 
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The constant a is used to adjust the weighting of past data in order to 

speed up filter response in transient situations. 

b. Estimator Performance. 

The performance of the fourth-order extended Kalman filter operating in 

dynamic environments and in the presence of additive noise can be bounded by 

means of the Cramer-Rao bounds. At high CNRs and mild dynamics the Cramer-Rao 

bound of Eq. (22) should apply, since this filter is an approximation to an 

optimum tracking algorithm. For high dynamics, where the variation in 

acceleration is significant, the bound for unknown acceleration, Eq. ( 2 3 ) ,  

should apply. Since this bound requires knowledge of the effective 

integration time, this quantity has to be determined. Response to dynamics, 

however, will only be assessed by means of the simulation results, except to 

note that dynamics tends to move the performance curves closer to the bound 

for unknown acceleration. 

c. Simulation Results. 

The performance of the EKF while tracking the common simulated trajectory 

has been evaluated. Both third- and fourth-order filters were considered. 

Since our primary interest is in evaluating tracking ability rather than 

acquisition, we assume that the initial conditions of the trajectory are 

precisely known. Thus the state components of the EKF are initially matched 

to the true trajectory. The exponential weighting coefficient a controls 

the memory of the filter. To reduce the effects of additive noise, a should 

be set to one in order to average over all previous data. In a dynamic 
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environment a is adjusted such that the present estimate is dominated by the 

past l/(a - 1) data points. For fixed sampling times, this establishes the 

equivalent integration time to be used in the Cramer-Rao bounds. An 

exponential weighting coefficient of 1.027 was used for the fourth-order EKF, 

as this value yielded the best performance. This corresponds to an effective 

memory of roughly 40 samples. 

A typical sample sequence of the instantaneous phase error is shown in 

Fig. 8(a) at a CNR of 26 dB-Hz, using a fourth-order EKF. It can be seen that 

the trajectory has little effect on the instantaneous phase error, while the 

instantaneous frequency and frequency rate errors tend to peak near the 

beginning and the end of each jerk pulse (Figs. 8[bl and [c]). This occurs 

because the peaks due to the trajectory are exaggerated by the presence of 

noise due to nonlinear effects within the estimator. Estimates of the 

loss-of-lock probability for phase and frequency estimates are shown in 

Figs. 9(a) and (b) for third- and fourth-order EKFs. Defining the threshold 

to be the CNR that yields 10% probability of loss-of-lock, it is clear that 

the fourth-order filter has a phase threshold of about 24.5 dB-Hz and a 

frequency threshold of roughly 24 dB-Hz. The rms phase, frequency, and 

frequency rate errors as functions of CNR are shown in Figs. 10(a), (b), and 

(c). At threshold, the minimum rms phase error is 0.4 rad, the minimum rms 

frequency error is about 3 Hz, while the minimum rms frequency rate error is 

roughly 75 Hz/sec. Note that the filter configuration with the lowest 

threshold does not achieve the lowest rms estimation errors. This is because 

the filter parameters were selected for minimizing loss-of-lock threshold 

rather than estimation error. 
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CROSS-PRODUCT AUTOMATIC FREQUENCY CONTROL (CPAFC) LOOP 

In this approach a frequency discriminator is employed to track the 

received frequency. An automatic frequency control (AFC) configuration that 

employs a cross-product discriminator is also referred to as a 

"quadri-correlator" AFC loop. 

a. CPAFC Loop Estimator Structure. 

The discriminator output is represented in [SI by 

I - "k - 'k-1 Qk - 'k-1 k 

where I and Q are the outputs of the in-phase and quadrature mixers. The 

performance of this loop operating in the presence of additive white Gaussian 

noise has been analyzed in [5]  for a general loop filter. In our application 

the loop filter was chosen to be of the form 

I L 

2 F(z) = + -1 
(1 - z - 5  

1 - 2  

where z is the independent variable of the z-transform, kl = rd/Ts, 

k2 = rd'/Ts, d = 4BL Ts/(r + l), BL is the nominal bandwidth of the cross- 

product AFC loop, r is the damping parameter, and Ts the loop update time. 

This loop is capable of tracking acceleration with zero steady-state frequency 

error. 
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b. Estimator Performance. 

In the absence of jerk and higher-order derivatives in the trajectory, 

the loop defined above tracks frequency variations with zero error in the 

absence of additive noise. However, jerk introduces a steady-state error that 

cannot be overcome with this loop. The addition of noise also degrades 

estimator performance, increasing the estimation error variance inversely with 

the carrier-to-noise ratio. Thus it makes sense to examine performance 

degradation due to either dynamics or additive noise separately, while the 

contribution of the other component is ignored. This allows us to assess loop  

performance when either component dominates. In general, both components 

contribute to the total estimation error. 

First we consider the steady-state frequency estimation error induced by 

a constant jerk of magnitude J .  From [61,  the steady-state frequency error 

due to constant jerk of magnitude J (m/sec ) is 3 

(Hz) ss 

which depends directly on the jerk, but inversely on the square of the nominal 

loop bandwidth. The variance of the frequency estimation error due to 

zero-mean additive Gaussian noise was found [61 to be 
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The error variance is seen to be inversely proportional to CNR and the square 

of the update time, but increases linearly with loop bandwidth. Comparing 

Eq. (42) with Eq. ( 4 3 ) ,  we see that increasing the loop bandwidth yields 

improved steady-state performance at the cost of degraded noise performance. 

Thus, conflicting requirements must be balanced when both additive noise and 

severe trajectory variations are present. 

c. Simulation Results. 

The performance of the cross-product AFC loop was evaluated by means of 

numerical simulations. For the trajectory under consideration, it was found 

that a nominal loop bandwidth of B = 8 Hz minimized the loss-of-lock L 
threshold. At a carrier-to-noise ratio of 25 dB-Hz, with jerk of magnitude 

100 g/sec, this bandwidth yields a calculated steady-state frequency error 

of fss = 22.6 Hz, and a noise-induced rms frequency error of roughly 

uf = 18 Hz. The simulations confirmed these predictions. 

A typical frequency error trajectory is shown in Fig. 11 at a CNR of 

26 dB-Hz. The average frequency error appears to remain constant throughout 

the trajectory. Fig. 12(a) shows the estimated loss-of-lock performance of 

the loop for various bandwidths and damping ratios, while Fig. 12(b) displays 

the corresponding rms frequency errors as a function of CNR. The lowest 

loss-of-lock threshold appears to be 24.5 dB-Hz, achieved by a 7-Hz loop with 

a damping ratio of 2. The corresponding rms frequency error is roughly 40 Hz 

for this case. We observe that small variations in bandwidth do not affect 

the loss-of-lock performance of the AFC loop significantly, but seem to have a 

more serious effect on the rms estimation error. 
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PHASE LOCKED LOOP (PLL) FREQUENCY ESTIMATOR 

Frequency estimates can also be obtained from the traditional digital 

phase locked loop. The block diagram of this loop is basically the same as 

that of the AFC loop, with the discriminator and loop filter functions 

redefined. Because of the dynamics inherent in the common trajectory, a 

type-I11 loop was simulated since it can track linear frequency variations 

with zero steady-state error. 

a. Phase Locked Loop Estimator Structure. 

The loop filter was chosen to be an "impulse invariant transformation" 

filter (IIT) due to its simplicity and desirable performance characteristics. 

The filter transfer function [ 6 ]  is 

G3 + G2 
-1 4 ) 2  1 - 2  (1 - z 

G1 + 

F(z) = (44) 

Here BL is again the nominal loop bandwidth, used to define the parameter d. 

Note that a second-order loop filter and the third-order numerically controlled 

oscillator used in the simulation [61 yield a fifth-order digital loop. 

However, this loop behaves like a type-I11 analog loop. For the simulations, 

a sinusoidal phase detector characteristic was assumed. Frequency estimates 

were obtained from the phase samples via the difference equation 
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.. .. 

* 

where 8 denotes the phase estimate sample at time nT . n S 

b. Estimator Performance. 

For the parameter values defined above, we have from [61 that the 
3 steady-state phase error due to a constant jerk of magnitude J (m/sec ) is 

3 3 
wc JOTs (rad r(r - k + 1) 

'ss = c rk [4BLTs(r - IC)] 

while the phase error variance due to noise is 

2 
uf (:) BL (rad ) (47) 

The loop bandwidth should be chosen to minimize the sum of the estimation 

errors due to both trajectory and additive noise. 

c. Simulation Results. 

I 

I 

It was found by simulation that a nominal loop bandwidth of 43 Hz (r = 3 ,  

k = 0.5) minimized the probability of losing lock for our trajectory. For 

this bandwidth with J = 100 g/sec, Eqs. (51) and (52) yield OSs = 0.46 rad and 

u8 = 0.095 rad at a CNR of 26 dB-Hz. The simulations compare favorably 

with theory for two extreme cases, namely the case without thermal noise and 

the case without jerk. Estimates of the rms phase estimation error and the 
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frequency estimation error are shown in Figs. 13(a) and (b), respectively. 

Both estimation errors increase with decreasing CNR without much evidence 

thresholding. However, we note from Fig. 13(c) that the probability 

loss-of-lock exhibits a well-defined threshold around 26 dB-Hz. 
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V. COMPARISON OF RESULTS 

As mentioned in the introduction, our primary interest is to estimate the 

frequency of the incoming signal. Other signal parameters, such as phase or 

frequency rate are considered to be of secondary importance here. Some of the 

algorithms naturally provide estimates of secondary parameters in the process 

of estimating the primary ones. For example, the maximum likelihood algorithm 

estimates the rate-of-change of frequency, the phase locked loop derives 

frequency estimates from phase estimates, while the extended Kalman filter 

estimates all three parameters simultaneously. In the following paragraphs we 

compare the various algorithms on the basis of their ability to track a common 

frequency trajectory, while commenting on their ability to estimate the other 

parameters. 

The loss-of-lock probability for each algorithm as a function of CNR is 

shown in Fig. 14(a). The parameter set that achieved the lowest threshold was 

selected in each case. Threshold is defined as the CNR at which the 

loss-of-lock probability for frequency estimation is 0.1. The approximate 

maximum likelihood estimator achieved the lowest threshold among the 

algorithms tested, namely 23 dB-Hz. The threshold for the extended Kalman 

filter was 24 dB-Hz, whereas the cross-product AFC loop and the phase-locked 

loop attained thresholds of 24.7 dB-Hz and 25.7 dB-Hz, respectively. The 

difference in thresholds is due to unequal sensitivity to severe dynamics 

among the various implementations. 

The root-mean-squared (rms) frequency estimation errors are displayed in 

Fig. 14(b), again as functions of CNR. For each algorithm, the parameter set 

5 2  



1 .o 

Y v 0.8 
41 
? 

s 
U 

m 
m 0.6 

U 
0 
t 
k 0.4 
m 

0 

J - 
L$ 

E 0.2 

0 

0 PLL ( 6 ~  = 43.0 H z )  
0 CPAFC (EL = 7.0 H z ,  r = 2) 
A EKF (n = 4, a = 1.03) 
0 M L ( N = 8 0 )  

CNR, d B - H Z  

Figure 14(a). Comparison of the Four Estimators on the 
Basis of Loss-of-Lock Probabilities 

102 

N 
I 

U 

m z 
a 

100 

0 PLL (BL = 43.0 Hz)  
0 CPAFC (BL = 7.0 H z ,  r = 2) 
A E K F  (n = 4, a = 1.03) 
0 M L ( N = 8 0 )  

20 21 22 23 24 25 26 27 

CNR, d B - H Z  

Figure 14(b). Comparison of the Four Estimators on the 
Basis of RMS Frequency Error 

53 



corresponding to minimum threshold was used. Note the sharp increase in rms 

estimation error for the ML algorithm near the loss-of-lock threshold. The rms 

estimation errors of the algorithms differ at threshold, which is typically 

the lowest CNR of interest. The EKF achieves roughly 3-Hz rms error at 

24 dB-Hz, the PLL reaches 14-Hz rms at 25.7 dB-Hz, the ML yields 7-Hz rms at 

23 dB-Hz, while the AFC algorithm operates with 40-Hz rms error at 

24.7 dB-Hz. These values represent the smallest estimation errors each 

algorithm can achieve at threshold, below which loss-of-lock will frequently 

occur. 

These algorithms should also be compared on the basis of operational 

comlexity, which we define as the average number of computations required per 

sample. The ML algorithm is the most complex, requiring the rapid computation 

of thirteen 256-point complex FFTs. The EKF requires approximately one order 

of magnitude fewer computations than the ML algorithm. The AFC and PLL 

implementations are the least complex, with the PLL algorithm requiring the 

fewest computations. 

The relevant estimator attributes are summarized in Table I. The last 

column indicates increasing relative complexity, ranked from one to four. The 

other columns display threshold, rms frequency estimation error at 26 dB-Hz 

(well above threshold for most estimators), and the availability of phase and 

frequency rate estimates. For many applications, the choice of a suitable 

estimator algorithm can be based on these attributes. 

54 



Table I. Overall Comparison of the Four Frequency Estimators 

F r e quenc y 
Thres ho Id RMS Error (Hz) Phase Rate 

Algorithm (dB-Hz) 23 dB-Hz 26 dB-Hz Estimate Estimate Complexity 
~~ ~~~ 

ML 23.0 7 1 No Yes 4 

EKF 23.9 3.5 2.2 Yes Yes 3 

CPAFC 24.7 60 31 No Yes 2 

PLL 25.7 20 12 Yes No 1 
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VI. SUMMARY AND CONCLUSIONS 

In this paper, four different frequency estimation algorithms were 

presented and discussed. An approximate maximum likelihood algorithm, an 

extended Kalman filter, a cross-product AFC loop, and a phase locked loop were 

compared on the basis of tracking a common frequency trajectory that exhibits 

severe dynamics. The results are applicable to high-dynamic trajectories in 

general. The maximum likelihood approach was found to attain the lowest 

loss-of-lock threshold (23 dB-Hz), and also the lowest rms estimation errors 

above threshold. Although the performance of the extended Kalman filter was 

somewhat worse in both respects, it was able to operate with lower frequency 

estimation errors near threshold. The digital phase-locked loop performed 

well above threshold, but could not maintain lock reliably below about 

26 dB-Hz. The threshold for the cross-product AFC loop was somewhat lower 

than for the phase-locked loop, but its estimation errors above threshold were 

the greatest of the four algorithms tested. Based on these simulations, we 

conclude that frequency estimates approaching the theoretical bound for known 

accelerations can be achieved in dynamic environments comparable to our 

simulated trajectory by the approximate ML and the EKF algorithms. 

Performance in terms of loss-of-lock probability and estimation error will 

generally depend on the severity of the dynamics encountered, and on the 

extent to which the system parameters can be matched to the temporal 

characteristics of the dynamic trajectory. 
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APPENDIX 

DERIVATION OF CRAMER-RAO BOUNDS 

The Cramer-Rao (CR) bounds on estimation error variance are derived for the 

case of a sinusoid of unknown frequency, frequency rate, and phase. We assume 

that the following in-phase and quadrature measurements are available: 

2 r (k) = A sin(eO + wOtk + Potk) + nl(k) a sl(k) + nl(k) 1 

r2(k) = A cos(Oo + w t + P t 2 + n2(k) s2(k) + n2(k) O k  O k  

= t + kT = (no + k) T ; k = 0, 1, ... N - 1 tk 0 

where nl(k), n2(k) are components of the noise vector satisfying Eq. (31b). 

We wish to obtain CR bounds for the unbiased estimation of the unknown 

but constant parameters eo Y wo Y and Po. Denoting the parameter vector 

by a_, and the conditional probability density function of the T 
(Po, W0’ eo) 
observation (conditioned on a) by f(R;a), - -  R(k) = {r(k), 0 5 k 5 N - l}, - r(k) = 

[rl(k), r2(k)lT, and following the development in [2], the ij-th element of the 

Fisher information matrix J becomes 

where a1 = Po, a2 = w o y  a3 = eo. After some straightforward computation, we 

obtain 
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N-1 

J = A2c U 2 
n k=O 

Letting 

3 2 
tn t* tn 

b C 

C d 

2 
U 

d e 

the elements of the matrix J may be expressed in terms of N and n N 0 as 

4 4  3 2 
0 0 0 a = T {n N + 4n P + 6n Q + 4nOR + S} 

3 3  2 b = T 

c = T~ {n N + 2n P + Q} 

d = T  { n N + P }  

e = P  

{n N + 3n P + 3n Q + R} 0 0 0 

2 
0 0 

0 

(A3 1 

where 
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N-1 
P =c k = N(N - 1)/2 

k=O 

N-1 

Q = k2 = N(N - 1)(2N - 1)/6 
k=O 

N-1 
R = E k 3 = N ( N - 1 )  2 2 / 4  

k=O 

N-1 

S =)' k4 = N(N - 1)(2N - 1)(3N2 - 3N - 1)/30 

The bound on the error variance of the estimate of a. is then given by 

. This matrix (u / A  ) multiplied by the i-th diagonal element of 
1 

-1 2 2  
JN 

can be expressed as 

2 (ce - d ) 

L *  

with 

2 2 lJNl = a(ce - d ) - b(be - cd) + c(bd - c 

* (ac - b '1 ) 
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Substituting Eqs. (A4) and (A5) into Eq. (A6) yields 

2 2 ce - d = clT 

2 ae - c2 = {4nOcl + 4nOc2 + C3} T4 (A7 1 

The explicit expression for IJNI and various < s  can be obtained in 

terms of N as follows: 

6 3  2 4  (N - 1) IJNI = T N (N + 2N3 - 3N2 - 8N - 4)/2160 (A8 1 

2 = N (N2 - 1)/12 

2 2 c3 = N (N - 1) (2N - 1) (8N - 3N - 11)/180 

2 3 C4 = N (N - 1) (7N - 23N2 - 18N - 8)/60 

2 rs = N (N - 1)' (ZN3 - 3N2 - 3N + 2)/120 

2 2 3 c6 = N (N - 1) (81N4 - 162N + 105N2 - 56N - 8)/240 

,. ,. 
The variance of the frequency estimate f = w0/2r, the parameter of greatest 0 

interest, then has the following bound 
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where 

6 v2 = 4C1, vl = 4C2, v0 = C3, A = IJN1/T 

For the special case no = 0, 

If N is so great that the highest-degree terms in N dominate in the 

expressions for v and A, then 0 

.. 
Again for n = 0, the error bound for is 0 0 

which may be approximated for large N as 

A 2 1800 var(PO) 3 - 
A2T4N5 

2 
2wl, with w the frequency derivative in rad/sec , and also Noting that Po = 

2 2  that (u / A  Ts) = (N0/2P T ) where (P /N ) is the received signal power-to-noise 

spectral density ratio, we obtain 

1 

c s  c o  

var(jl) 'i 22 (5) 
T5N5 'c 

(A15 1 
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2 in units  of (Hz/sec) . Comparison with the bound in Eq. (23)  shows that the 

performance bound for estimating fo is a factor of 16 greater in the 

presence of an unknown frequency rate, than for the known (or zero frequency 

rate) case. 
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